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SUMMARY

Recently developed approaches for highly multi-
plexed imaging have revealed complex patterns of
cellular positioning and cell-cell interactions with
important roles in both cellular- and tissue-level
physiology. However, tools to quantitatively study
cellular patterning and tissue architecture are
currently lacking. Here, we develop a spatial analysis
toolbox, the histo-cytometric multidimensional anal-
ysis pipeline (CytoMAP), which incorporates data
clustering, positional correlation, dimensionality
reduction, and 2D/3D region reconstruction to iden-
tify localized cellular networks and reveal features
of tissue organization. We apply CytoMAP to study
the microanatomy of innate immune subsets in mu-
rine lymph nodes (LNs) and reveal mutually exclusive
segregation of migratory dendritic cells (DCs),
regionalized compartmentalization of SIRPa� dermal
DCs, and preferential association of resident DCs
with select LN vasculature. The findings provide in-
sights into the organization of myeloid cells in LNs
and demonstrate that CytoMAP is a comprehensive
analytics toolbox for revealing features of tissue or-
ganization in imaging datasets.

INTRODUCTION

Recent advances in intravital microscopy and multiplexed imag-

ing approaches have revealed that the spatial organization of cell

populations in tissues is highly complex and intimately involved

in diverse physiological processes, as well as in major patholog-

ical conditions, such as infections, autoimmunity, and cancer.

For the immune system in particular, cellular positioning is critical

for both cell homeostasis and generation of protective re-
This is an open access article und
sponses during infection or after vaccination (Eisenbarth, 2019;

Groom, 2019; Qi et al., 2014). Within lymph nodes (LNs) alone,

different subsets of dendritic cells (DCs) are spatially segregated

within distinct tissue regions in a highly non-uniform fashion,

which influences the sensitivity, kinetics, magnitude, and quality

of the downstream adaptive immune response (Baptista et al.,

2019; Gerner et al., 2012, 2015, 2017; Kissenpfennig et al.,

2005; Kitano et al., 2016). Notably, advanced microscopy tech-

niques have only recently revealed these findings in what were

previously considered to be relatively well-studied organs, sug-

gesting that further improvements in both microscopy and

spatial analytics approaches can yield important insights into

how complex biological systems operate.

This realization has inspired a number of emerging methods

for highly multiplexed in situ cellular profiling (Eng et al., 2019;

Gerner et al., 2012; Glaser et al., 2019; Gut et al., 2018; Li

et al., 2019; Lin et al., 2015; Saka et al., 2019; Sch€urch et al.,

2019; Vickovic et al., 2019; Winfree et al., 2017). These tech-

niques generate panoptic datasets describing phenotypic, tran-

scriptional, functional, and morphologic cellular properties while

retaining information on the precise 2-dimensional (2D) or 3D

positioning of cells within tissues. However, currently, there is

a lack of accessible and simple-to-use tools for studying the

complex multi-scale spatial relationships between different cell

types and their microenvironments, for characterizing global fea-

tures of tissue structure, and for understanding the heterogene-

ity of cellular patterning within and across samples. Existing ap-

proaches often utilize combinations of tools to reveal distance

relationships between cells and tissue boundaries, utilize near-

est neighbor and other statistical approaches to identify prefer-

ential associations among different cell types across relatively

small tissue areas, or necessitate the extensive use of custom-

ized scripts (Caicedo et al., 2017; Coutu et al., 2018; Goltsev

et al., 2018; Kraus et al., 2016; Mahadevan et al., 2017; Schapiro

et al., 2017; Sch€urch et al., 2019). The lack of readily accessible

and easy-to-use analytics tools has hampered the ability of biol-

ogists with access to high-dimensional imaging technologies to
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obtain an in-depth understanding of the spatial relationships of

cells and their surrounding tissue microenvironments within

quantitative imaging datasets.

Here,wedevelopedauser-friendly, spatial analysismethod, the

histo-cytometric multidimensional analysis pipeline (CytoMAP),

which utilizes diverse statistical approaches to extract and quan-

tify information about cellular spatial positioning, preferential cell-

cell associations, and global tissue structure. We implemented

CytoMAPasacomprehensive toolbox inMATLABspecifically de-

signed to analyze datasets generated with existing quantitative

approaches that already incorporate information on cell pheno-

type, morphology, and location. CytoMAP markedly simplifies

spatial analysis by grouping cells into local neighborhoods,

which can then be rapidly analyzed to reveal complex patterns

of cellular composition, region structure, and tissueheterogeneity.

The CytoMAP platform incorporates multiple modules for anal-

ysis, including: machine-learning-based data clustering, cellular

position correlation, distance analysis, visualization of tissue

patterning throughdimensionality reduction, region networkmap-

ping, and 2D or 3D region reconstruction. Analysis with CytoMAP

reveals and quantitates 2D or 3D tissue architecture, local cell

composition, and cell-cell spatial networks, as well as the inter-

connectedness of tissue regions. CytoMAP also facilitates sam-

ple-to-sample comparison, allowing exploration of structural

and compositional heterogeneity across samples and diverse

experimental conditions. Furthermore, CytoMAP can be utilized

for the analysis of positionally resolved data generated with

diverse methods and across scales of various lengths, allowing

integration into various disciplines.

Wevalidate the capabilities ofCytoMAPby investigating innate

and adaptive cell organization in steady-statemurine LNs, aswell

as in disease-associated tissues, including solid tumors and

Mycobacterium tuberculosis (Mtb)-infected lung granulomas

(Cadena et al., 2017; Gern et al., 2019; Keren et al., 2018; Plumlee

et al., 2020). Our analyses recapitulate previous descriptions of

the cellular microenvironments within these tissues and identify

previously unappreciated features of myeloid cell organization

in LNs. Specifically, we reveal predominant localization of migra-

tory SIRPa� dermal DCs (dDCs) within the lower cortical ridge of

LNs, as well as preferential association of LN-resident DCs with

select LNblood vessels (Girard et al., 2012;Moussion andGirard,

2011; Ochiai et al., 2014; Tussiwand et al., 2015).

RESULTS

CytoMAP Workflow
Tissues are composed of different cell types that group together

into local neighborhoods. Similar neighborhoods extend further

across large distances to generate tissue regions, and distinct

spatial combinations and associations of regions collectively

form the overarching tissue structure. Based on this concept,

CytoMAP utilizes information on cell type and position to

phenotype local neighborhoods and reveal how their spatial dis-

tribution leads to the generation of global tissue architecture

(Figure 1A).

To accomplish this, the acquired phenotypic properties and

positional information of individual cell objects are first passed

to CytoMAP, in which they are spatially subdivided into local
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neighborhoods of user-defined dimensions (Figure 1B). The

generated neighborhoods contain information on the cell

composition and density and the expression of specific mole-

cules, as well as data on any additional structural or functional

parameters. These parameters are next passed to a self-orga-

nizing map (SOM) that clusters the neighborhoods into groups

(Gut et al., 2018; Jiang et al., 2010; Kohonen, 1990; Vesanto

et al., 2000). The clustered neighborhoods represent areaswithin

the tissue with similar cellular composition and are, thus, defined

here as tissue ‘‘regions,’’ which are denoted by the different

colors in the top of the example heatmap in Figure 1B. This heat-

map allows direct visualization of the cellular composition of the

neighborhoods (columns on the heatmap) in the identified re-

gions and shows the relative prevalence of the different regions

within the imaged sample, as denoted by the size of the region

color bars. The neighborhoods are next spatially remapped

and color coded by region. This allows direct visualization of

the size and structure of the different regions within the tissue.

Finally, the multiple visualization and quantification techniques

incorporated into CytoMAP are used to form a more complete

understanding of the spatial properties of cells, neighborhoods,

and regions within tissues (Figure 1C). These include cell-cell

spatial correlation analysis, distance mapping, and dimension-

ality reduction tools, as well as region interconnectedness and

prevalence analyses, among others, which collectively provide

a comprehensive platform for spatial analysis.

CytoMAP Quantifies Well-Defined Tissue Structure
in LNs
We first validated the CytoMAPworkflow by analyzingmurine LN

tissues, which have well-defined cellular organization (Qi et al.,

2014). To accomplish this, a 20-mm-thick section of a draining

LN from a C57BL/6 mouse was stained with a panel of directly

conjugated antibodies against distinct innate and adaptive im-

mune populations (Table S1) and imaged using a confocal micro-

scope. The image in Figure 2A indicates the staining of the tissue

with markers for B cells (B220), DCs (CD11c), and T cells (CD3).

Images were next analyzed by histo-cytometry (Gerner et al.,

2012; Li et al., 2017, 2019), with the individual cells first

segmented in 3D and then with the cell objects’ mean channel

fluorescent intensity (MFI) and position (x,y, and z) information

imported into FlowJo for hierarchical gating of three primary

cell types: T cells, B cells, and CD11c-expressing cells (primarily

DCs) (Figure 2B). Next, the positional data on these cell popula-

tions were imported into CytoMAP for further processing. In

CytoMAP, the cells were subdivided into 30-mm-radius neigh-

borhoods using the ‘‘raster scan neighborhoods’’ function,

which digitally raster scanned a cylindrical window with the

user-defined radius over the dataset (Figure 2C). This neighbor-

hood radius was chosen empirically, as it provided an optimal

balance of spatial granularity and processing speed to reveal

major features of cellular organization for this sample (Fig-

ure S1A), and it was also consistent with dispersion distances

of secreted cytokines (Oyler-Yaniv et al., 2017). A SOM was

next used to cluster these neighborhoods based on their cellular

composition but not their tissue location. The number of regions

was determined using the Davies-Bouldin criterion, which calcu-

lates the ratio of within-cluster to between-cluster distances



Figure 1. Workflow and Features of CytoMAP

(A) CytoMAP is designed to extract quantitative information on cellular localization and composition within tissue regions, revealing how local cell microenvi-

ronments form global tissue structure, as well as allowing comparison of intra- and inter-sample tissue heterogeneity.

(B) The workflow starts with multi-parameter imaging of either thin sections or large 3D tissue volumes. Next, hierarchical gating of cell objects is used to annotate

distinct cell subsets, which are passed into CytoMAP for analysis. CytoMAP segments these spatial datasets into individual neighborhoods and uses clustering

algorithms to define similar groups of neighborhoods, or tissue ‘‘regions,’’ which are explored and spatially reconstructed in 2D or 3D space.

(C) CytoMAP contains multiple tools to quantify and visualize the tissue architecture, including analysis of spatial correlations between different cell types,

investigation of distance relationships of cells with architectural landmarks, analysis of neighborhood heterogeneity within individual tissues or across multiple

samples, and quantitative visualization of tissue architecture.
(Figure S1B) (Davies and Bouldin, 1979). The heatmap in Fig-

ure 2D indicates the cell composition (rows) of the individual

neighborhoods (columns) and the cluster/region (top color bar)

to which they were assigned. This analysis identified tissue re-

gions that were primarily composed of B cells, T cells, DCs, or

those with mixed cellular composition. These regions were

next visualized by plotting the positions of the color-coded

neighborhoods (Figure 2E): this demonstrated reconstruction

of the original image, revealing the localization of computation-

ally defined B cell follicles (blue), the deep T cell zone (red), the

outer T zone paracortex and the T-B border (orange), and the

LN medullary and subcapsular regions (green).

In addition to discreet region definitions, we implemented

pseudo-space to simplify visualizing the continuous region tran-
sitions within tissues (Figure 2F). Pseudo-space allows the user

to sort neighborhoods by the absolute number, or composition,

of different cell types within the neighborhoods and plots the

neighborhoods in this sorted order on a linear axis. This pro-

vides a qualitative picture of how different cell types change in

their composition across the neighborhoods along this user-

defined dimension. Pseudo-space visualization showed that,

as the percentage of B cells in the neighborhoods declined,

the percentage of T cells increased (Figure 2F), mirroring what

was observed in the original image (Figure 2A). In the transitional

area between the B cell- and T cell-rich neighborhoods, there

was an increase in DCs, likely corresponding to the increased

abundance of DCs in the medullary and paracortical regions

of the LN.
Cell Reports 31, 107523, April 21, 2020 3



Figure 2. CytoMAP Identifies Major Features of LN Tissue Structure

(A) Confocal image and zoom-in image of a LN section from a C57BL/6mouse, adoptively transferred with 10̂ 6 naive OT-II CD4+ T cells and immunizedwith OVA

plus alum. Overview image scale bar, 200 mm; zoom-in scale bar, 30 mm. Only select channels are shown.

(B) Histo-cytometry plots of cell object MFI for different channels demonstrating the gating used for identification of the indicated immune cell populations.

(C) Positional plot of cell data from (B) (areamatches the zoom-in image in A). CytoMAPwas used to calculate the number of cells in 30-mm-radius neighborhoods

(denoted by the circles in the bottom left), which were raster scanned as denoted by the arrow.

(D) Heatmap of the neighborhood composition (percentage of each cell phenotype per neighborhood) after SOM clustering. Individual clusters, or ‘‘regions,’’ are

denoted by the color bar at the top of the graph. Arrowheads at the bottom highlight specific neighborhoods.

(E) Region color-coded positional plot of the neighborhoods from (D).

(F) Pseudo-space plot with the neighborhoods sorted based on B cell composition (sorted to the left) and T cell composition (sorted to the right).

(G) Dimensionality reduction plots of the neighborhoods in which the standardized numbers of cells and total MFI of all channels were used for the dimensionality

reduction. t-SNE, PCA, UMAP, and PHATE were all calculated for the same input neighborhoods, which are color coded based on region type from (D).

For this experiment, an imaging volume of 0.03 mm3, 139,399 cells, and 11,328 neighborhoods were analyzed.
To further explore neighborhood heterogeneity, we used

several establishedalgorithms: t-DistributedStochasticNeighbor

Embedding (t-SNE),principal-component analysis (PCA), uniform

manifold approximation and projection (UMAP), and potential of

heat-diffusion for affinity-based transition embedding (PHATE),

which all reduce the complexity of neighborhoods into a two-

dimensional plot (van der Maaten and Hinton, 2008; McInnes

et al., 2018;Meehan et al., 2020;Moon et al., 2019). Instead of in-

dividual cells, the cellular composition and biomarker expression

of the neighborhoods, but not their position, were used for the

dimensionality reduction. These analyses revealed a complex
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structure in the LN dataset with clearly demarcated but also inter-

connected clusters of neighborhoods (Figures 2G and S1D).

Color coding of neighborhoods based on regions, as defined in

Figure 2D, revealed clear association of the distinct region types

with the different clusters, suggesting that both SOM clustering

and dimensionality reduction methods are capable of identifying

cellular organization within tissues. This was confirmed using

manual gatingwithin the t-SNEplot (FigureS1E), andspatialmap-

ping (Figure S1F) of the t-SNE clusters, which accurately recon-

structed the global tissue architecture as well as identified image

artifacts (black color-coded gate in Figures S1E and S1F).



Dimensionality reduction also demonstrated the inter-connected

nature of the regions, showing neighborhoods from the B cell fol-

licle and T cell zone regions being connectedwith one another by

neighborhoods assigned to theparacortical region (orange in Fig-

ures 2G and S1D). This is likely due, in part, to smoothing effects

from raster scanning the neighborhoods in steps of half the

defined radius, so that neighborhoods partially overlap. However,

this structure also captured features of the actual tissue organiza-

tion, identifying the paracortical T-B border regions where T cells

and B cells are in sufficient spatial proximity to be included in the

same neighborhood (Figure 2C, neighborhood N2). Furthermore,

we noted an increased cluster structure when performing t-SNE

analysis of non-normalized data (Figure S1D). To understand

how such a structure was generated, we visualized the mean

channel intensitiesperneighborhoodwithheatmaps (FigureS1D).

This demonstrated substantial variation in the channel intensities

across the different t-SNE sub-clusters, suggesting that addi-

tional neighborhood separation is driven by the degree of local

channel signal, likely representing local cellular abundance.

We next used network analysis to interrogate the interconnec-

tedness of the regions by calculating the percentage of the re-

gion borders that are shared with other regions (Figure S1G).

Mapping of these border relationships revealed that the T cell

zone region (red) is connected to the B cell region (blue) via the

paracortical region (orange), recapitulating the dimensionality

reduction analysis and the original image (Figures 2A, 2G, and

S1G). Changing the size of the neighborhoods in this simplistic

example did not change the interconnectedness of the regions

(Figure S1G).

CytoMAP Analysis of Tumor Microenvironments
Wenext tested CytoMAP by exploring the distribution of immune

cells in more complex tissue types. For this, we imaged cross-

sections of murine CT26 colorectal tumors stained with a panel

of markers to detect various innate and adaptive immune popu-

lations (Figure 3A). Histo-cytometry was used to gate on

CD3+Foxp3� T cells (putative T effector cells [Teffs]), CD3+

Foxp3+ T regulatory cells (Tregs), B220+CD3� B cells, MHC-

II�CD64+ myeloid cells (putative monocyte-derived tumor-asso-

ciated macrophages [TAMs]), CD11c�SIRPa+MHC-II+ myeloid

cells (putative activated macrophages [aMacs]), CD11c+MHC-

II+ DCs, and MHC-II+ SIRPaDIM myeloid cells (Figure S2A)

(DeNardo and Ruffell, 2019; Jahchan et al., 2019; Veillette and

Chen, 2018). Although these limited markers provide inexact

cell annotations, the spatial distribution of the identified popula-

tions revealed substantial intra-tumoral heterogeneity and strik-

ing compartmentalization of the tumor tissue into areas enriched

with different immune cell subsets (Figure 3B). SOM clustering of

neighborhoods identified tissue regions preferentially associ-

ated with specific myeloid cell populations (Figures 3C and

S2B). These region definitions were also largely consistent

across permutations of the number of samples used to train

the clustering algorithm (Figures S2B and S2C). Spatial visualiza-

tion of the neighborhoods revealed discrete tumor zones

composed of relatively segregated region types (Figure 3D).

For example, region R3 was predominantly composed of DCs

and Teff cells and was primarily localized to the outer periphery

of the tumor (Figures 3C, 3D, and S2B), resembling the lympho-
cytic cuff observed in colorectal and other cancers (Keren et al.,

2018). If neighborhoods from either tumor 1 or tumor 2, which

have increased portions of this peripheral region (Figures 3E

and 3F), were excluded from the training dataset, the Davies-

Bouldin criterion identified 7 instead of 5 regions, effectively

splitting the DC-rich R3 region into three separate sub-regions

(Figures S2B and S2C). In contrast, region R2 was dominantly

composed of TAMs andwas consistently identified and localized

within the deeper portions of the tumor (Figures 3C, 3D,

and S2B).

Further pseudo-space analysis showed an increased pres-

ence of T cells, B cells, and DCs in the tumor periphery and their

relative exclusion from the TAM-rich tumor core (Figure 3G). This

also demonstrated that pseudo-space analysis can effectively

reduce cellular patterning to a single dimension and aid in visu-

alization of highly complex tissues. These relationships were

next quantified using the Pearson correlation coefficients of the

number of cells per neighborhood (Figures 3H and S2D). Such

cell-cell spatial correlation analyses help reveal which cell popu-

lations preferentially associate with one another or, conversely,

avoid one another. This revealed a positive spatial correlation

of T and B cells with DCs and aMacs and a negative correlation

with TAMs. Notably, the negative correlation of Teff cells and

TAMs indicates that, while Teff cells are generally capable of infil-

trating the tumor tissue, they are not enriched in the areas domi-

nantly populated with TAMs and, thus, lack the ability to infiltrate

the deep tumor nests in this cancer model. Together, this diverse

collection of visualization and quantification metrics generates a

detailed picture of the tissue structure and cellular relationships

within tumors.

CytoMAP Reveals Organization of Immune Cells in Mtb
Granulomas
In addition to tumors, previous studies have demonstrated struc-

tured organization of immune cells within Mtb-infected pulmo-

nary granulomas (Cooper, 2009; Gern et al., 2019; Kahnert

et al., 2007; Plumlee et al., 2020; Ramakrishnan, 2012). There-

fore, we tested the ability of CytoMAP to explore this organiza-

tion in a 20-mm lung section from a mouse infected with aerosol-

ized Mtb. We observed the formation of a discrete Mtb lung

granuloma with complex cellular patterning (Figure 4A). Two re-

gions of interest, one of the unaffected lung and one of the Mtb

granuloma (Figure 4A), were imaged at high resolution, and

histo-cytometry was used to gate on CD4+ and CD4� T cells,

B cells, CD11b+ myeloid cells, alveolar macrophages (Alv.

Macs), DCs, and Mtb+-infected cells (Figures 4B and S3A) (Co-

hen et al., 2018; Gibbings et al., 2017). SOM neighborhood clus-

tering in CytoMAP revealed distinct region types composed of

different immune cell types (Figures 4C, S3B, and S3C). Remap-

ping of the region color-coded neighborhoods demonstrated

that the neighborhoods enriched in Mtb-infected and CD11b+

myeloid cells (region R3) were primarily located in the deep cen-

ter of the granuloma (Figure 4D). These infected regions were

surrounded by neighborhoods containing high concentrations

of T cells (regions R4 and R5), which were further surrounded

by regions associated with uninfected myeloid cells and Alv.

Macs (region R2). There were also segregated B cell-rich neigh-

borhoods (region R6) (Figure 4D), which are reminiscent of B
Cell Reports 31, 107523, April 21, 2020 5



Figure 3. CytoMAP Analysis of a Murine Colorectal Tumor Sample

(A) Confocal image of a representative 20-mm-thick CT26 tumor section isolated 9 days after subcutaneous inoculation. Zoom-in image shows a region in the

tumor periphery. Main image scale bar, 500 mm; zoom-in scale bar, 50 mm.

(B) Positional plot of the lymphocyte (top) and myeloid cell (bottom) populations.

(C) Heatmap of the normalized immune cell composition of regions defined by SOM clustering of 50-mm-radius neighborhoods from all imaged samples.

(D) Positional plot of neighborhoods color coded by region defined in (C).

(E) Region prevalence plot showing the percentage of the neighborhoods from each sample in each region.

(F) t-SNE plots of the neighborhoods from all three samples, color coded based on region type.

(G) Pseudo-space plot with TAM-rich neighborhoods sorted to the left and DC-rich neighborhoods sorted to the right.

(H) Heatmap of the Pearson correlation coefficients of the number of cells per neighborhood across the imaged tumor samples.

For this experiment, 3 tumor samples with a total imaging volume of 1.8 mm3 and a total of 102,354 myeloid cells, 68,801 lymphocytes, and 192,785 neigh-

borhoods were analyzed.
follicles and tertiary lymphoid structures. Pseudo-space analysis

showed that, within the granuloma, T cell- and B cell-rich neigh-

borhoods were concentrated just outside of the core infected

Mtb+ cells (Figure 4E). The Alv. Macs and DC-rich neighbor-
6 Cell Reports 31, 107523, April 21, 2020
hoods also appeared excluded from the central granuloma

core, recapitulating the primary image (Figure 4A). These rela-

tionships were further quantified using Pearson correlation coef-

ficients of the numbers of cells in the neighborhoods (Figures 4F



Figure 4. CytoMAP Analysis of Mtb-Infected Lung Granuloma

(A) Confocal image of a 20-mm-thick section from aMtb-infectedmurine lung sample. The left image showsmultiple imaged channels overlaid in white. Scale bar,

500 mm. Zoom-in images show separately acquired regions of interest of an uninvolved lung area and the Mtb granuloma. Zoom-in scale bars, 100 mm.

(B) Positional plots of the immune cell subsets in the uninvolved (top) versus granuloma (bottom) lung areas shown in (A).

(C) Heatmap of SOM-clustered, 50-mm-radius neighborhoods.

(D) Positional plots of the neighborhoods defined in (C), color coded by region, within the uninvolved (top) versus granuloma (bottom) lung areas.

(E) Pseudo-space plots of the uninvolved (left) versus granuloma (right) lung neighborhoods after sorting for Alv. Macs (sorted to the left) and Mtb+ cells (sorted to

the right).

(F) Rotated half-heatmaps of the Pearson correlation coefficients of the number of cells within the neighborhoods across the uninvolved lung (left) and the

granuloma (right).

For the uninvolved lung region, an imaging volume of 0.05mm3, 36,194 cells, and 4,725 neighborhoodswere analyzed. For the granuloma lung region, an imaging

volume of 0.07 mm3, 140,453 cells, and 7,350 neighborhoods were analyzed.
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Figure 5. CytoMAP Reveals Diverse Patterns of Myeloid Cell Organization in LNs
(A) Confocal image of a representative steady-state, non-draining LN section from an immunized C57BL/6 mouse. Scale bar, 200 mm; right zoom-in scale bar,

50 mm.

(B) Histo-cytometry gating scheme used to annotate cell subsets.

(C) Positional plots of the myeloid cell subsets.

(legend continued on next page)
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and S3D). In this analysis, the left half of the heatmap, represent-

ing uninvolved lung, showed no strong correlations between the

different cell types. In contrast, the right half of the heatmap, rep-

resenting the granuloma, showed a positive spatial correlation

between the Mtb+-infected cells and the CD11b+ myeloid cells,

a weaker correlation with the surrounding T cells, and a negative

correlation with Alv. Macs. These findings are consistent with

previous observations of immune cell organization in Mtb granu-

lomas describing the partial segregation of CD4+ T cells from

Mtb-infected cells and the formation of tertiary lymphoid struc-

tures (Kahnert et al., 2007). Collectively, these data indicate

that CytoMAP is capable of quantitative spatial analysis of highly

complex tissue structures across diverse organs and disease

settings.

CytoMAP Maps Myeloid Cell Organization in Steady-
State LNs
Finally, we used CytoMAP to investigate the distribution of

myeloid cell subsets in steady-state LNs, which have been pre-

viously shown to have intricate patterns of cellular localization

(Eisenbarth, 2019; Gerner et al., 2012, 2015; Qi et al., 2014). To

this end, 20-mm sections from a cohort of LN samples were

stained with a 12-plex antibody panel to detect distinct DC

and macrophage subsets, as well as to visualize T cells, B cells,

and blood and lymphatic stromal cells as landmark reference

structures. Tissues were imaged (Figure 5A), and distinct cell

populations were identified by histo-cytometry (Figures 5B and

S4A) (Crozat et al., 2011; Merad et al., 2013). Basic spatial re-

mapping of these populations in CytoMAP qualitatively validated

previous findings on the location of different DC and macro-

phage subsets (Figure 5C). In particular, we observed that sub-

capsular sinus and medullary macrophages (SCS Macs and

Med Macs, respectively) localized to the outer LN periphery

and medullary regions, respectively. Resident cDC1s and

cDC2s also exhibited previously established spatial patterns,

with the resident cDC2s preferentially localizing in the LN periph-

ery and the resident cDC1s more evenly distributed within the

T cell zone (Figures 5C and S4B) (Brewitz et al., 2017; Gerner

et al., 2012; Kitano et al., 2016). Similarly, visualization of

the migratory DC subsets confirmed previous findings, with

CD207+ cells (Langerhans cells and migratory cDC1s) (Merad

et al., 2013) located within the central T cell zone and the

CD301b+ and SIRPa+ dDC subsets located in regions bordering

the B cell follicles and in the lower cortical ridge, respectively
(D) Heatmap of the cellular composition of 30-mm-radius neighborhoods showin

manual annotation (bottom color bar).

(E) Positional plot of the LN neighborhoods as color coded by the region type (to

(F) Positional plot of surfaces generated on the manually annotated regions (bott

(G) Violin plot showing the number of cells as a function of distance to the border

the left of zero represent cells inside the region; distances to the right of zero rep

(H) Plot of the distances of cells to the TZ+IFZ region, in which each dot represent

(n = 5).

(I) Mean distances of indicated cells to the CMC region.

(J) Mean distances of indicated cells to the B follicle region.

(K) Plot of the Pearson correlation coefficients between the number of indicated

TZ+IFZ region neighborhoods (right). Correlations were averaged over the samp

For this experiment, 5 LNs with an average imaging volume of 0.023 mm3 and an

analyzed per sample. Data are representative of at least two independent exper
(Figures 5C and S4B) (Gerner et al., 2012; Kissenpfennig et al.,

2005; Kitano et al., 2016; Kumamoto et al., 2013; Sokol et al.,

2018). In addition, histo-cytometry analysis revealed a recently

described population of migratory SIRPa� dDCs (Ochiai et al.,

2014; Tussiwand et al., 2015). This migratory DC subset ap-

peared predominantly localized in the lower cortical ridge

bordering the LN medulla (Figures 5A, 5C, and S4B).

To aid in tissue region classification, additional spot objects

were generated on the landmark channels (i.e., CD3, B220,

and Lyve1 for the T cell zone, B cell follicles, and lymphatics,

respectively), and the positional data from these landmark ob-

jects were passed into CytoMAP. In addition, with the ‘‘generate

random points’’ function in CytoMAP, a population of randomly

distributed points (RDPs) was defined (Figure S4B). Heatmap

visualization of clustered neighborhoods showed 10 distinct re-

gion types (see the color bar at the top of Figure 5D) that were

enriched in different cell types. Positional remapping of the re-

gion color-coded neighborhoods recapitulated the general fea-

tures of the primary image (Figures 5E and S5A–S5D) and

demonstrated segregation of the DC and macrophage subsets

into distinct spatial compartments, corroborating previous ob-

servations (Gerner et al., 2012). Region visualization further

confirmed the predominant localization of the SIRPa� migratory

dDCs (region R4) in the lower cortical ridge (Figures 5E, S4B, and

S5A). Additional visualization of neighborhood clustering using

UMAP analysis supported these region annotations while also

revealing how these regions were spatially associated with one

another across samples (Figure S5D).

We next used CytoMAP to manually annotate the regions

based on landmark spot abundance (Figures 5D, S4B, and

S5C). This resulted in new composite regions, color annotated

at the bottom of the heatmap in Figure 5D, with region R1 corre-

sponding to B cell follicles (blue), region R2 corresponding to the

SCS (gray), regions R3–R7 corresponding to the T cell zone and

interfollicular zones (TZ+IFZ; green), region R8 corresponding to

the sinus (gray), and regions R9 and R10 corresponding to the

cortico-medullary cords (CMCs; red) (Figures 5D, 5F, and

S5C). Next, using the ‘‘make surface’’ function in CytoMAP, we

built surfaces around the neighborhoods in these annotated

groups and then calculated the distances of the myeloid cells

to the borders of these surfaces (Figures 5G and S5E). The

distance to each region border for all cells in a single sample

(Figures 5G and S5E), or averaged over all cells for multiple sam-

ples (Figures 5H–5J and S5F), showed that most DCs were
g regions as defined by SOM clustering (top color bar) and regions defined by

p color bar in D).

om color bar in D).

of the TZ+IFZ annotated region for the representative LN sample. Distances to

resent cells outside the region.

s the mean distance of the indicated cell population in an individual LN sample

cells per neighborhood using either all tissue neighborhoods (left) or only the

le cohort (n = 5) from one experiment.

average of 6,611 myeloid cells, 84,347 spots, and 12,708 neighborhoods were

iments.
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distributed within the TZ+IFZ, while the macrophages were posi-

tioned in either the SCS or the CMCs. This analysis also

confirmed preferential localization of resident cDC2s in closer

proximity to the CMCs and B cell follicles, compared to the

more heterogeneous distribution of resident cDC1s within the

LN (Figures 5I and 5J). CD301b+ DCs were found in close prox-

imity to the B cell follicles, as previously described (Kumamoto

et al., 2013), while the SIRPa� migratory dDCs were located

distally from the B cell follicles and in close proximity to the

CMCs (Figures 5I, 5J, and S5F).

The discrete clustering and segregation of different myeloid

cell types (Figures 5D and 5E) also indicated that the DC subsets

are distributed in spatially non-overlapping patterns. To explore

this further, we calculated the Pearson correlation coefficients of

the number of cells per neighborhood, averaged over all of the

samples, either for the whole samples or only within the TZ+IFZ

regions (Figures 5K and S5G). Whole-tissue correlation analysis

showed that all DC populations were positively correlated with

CD3 spots and negatively correlated with Lyve1 spots and

Med Macs, indicating that, on average, most DCs are located

in the T cell zone (Figure 5K, left). Analysis of the TZ+IFZ

compartment revealed that migratory DC populations (i.e.,

CD207+ DCs, CD301b+ dDCs, SIRPa+/� dDCs) were, in general,

negatively correlated with one another or displayed little spatial

correlation (Figure 5K, right), thus providing quantitative support

for their spatial segregation in LNs. Together, these analyses

highlight the ability of CytoMAP to delineate complex patterns

of cellular organization into quantitative metrics.

CytoMAP Quantifies Myeloid Cell Associations with LN
Blood Vessels
A qualitative examination of imaged LN sections also revealed

that some DC populations were highly proximal to LN blood ves-

sels. Given the established role of DCs in the homeostatic main-

tenance of LN vasculature (Girard et al., 2012; Moussion andGir-

ard, 2011), we examined the relative distribution of DC subsets

with respect to blood vessels. To minimize the sampling error

associated with thin section imaging, we performed volumetric

imaging of stained and Ce3D optically cleared 500-mm-thick sli-

ces of steady-state murine LNs (Figure 6A) (Li et al., 2017, 2019).

Intriguingly, qualitative examination of the imaged LNs revealed

close association of Clec9a+ DCs with CD31+ vascular endothe-

lial cells, andmany of these DCs encapsulated large segments of

blood vessels (Figure 6A; Video S1). In contrast, CD207+ cells

(migratory cDC1 and Langerhans cells) (Merad et al., 2013) ap-

peared less associated with the LN vasculature. Clec9a can be

expressed on both LN-resident and migratory cDC1 subsets

(Crozat et al., 2011). In these specific volumetric datasets, we

did not achieve optimal major histocompatibility complex class

II (MHC-II) staining for robust discrimination of migratory versus

resident DCs. However, in thin-section imaging, Clec9a labeling

is primarily associated with CD11cHIGHMHC-IIDIMSIRPa� cells,

corresponding to resident cDC1s (Figures S4C–S4F). Addition-

ally, Clec9a staining does not greatly overlap with CD207 signal,

which is associated with migratory DCs (Figures 5A and 6A).

Thus, while some of the detected Clec9a+ DCs in the volumetric

datasets may be attributed to additional myeloid populations

(Figure 6A), they largely represent LN-resident cDC1s. To quan-
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titate these observations, we used histo-cytometry to identify

various myeloid subsets and passed their data into CytoMAP

(Figures S6A and S6B) (Li et al., 2017, 2019). To provide posi-

tional information on CD31+ blood vessels, we generated

segmented surface objects on the CD31 channel and imported

these objects’ data into CytoMAP. As mentioned earlier, posi-

tional information of B220+ B cell and Lyve1+ lymphatic sinus

landmark spots were also included. In addition, RDPs were

defined throughout the 3D LNs for comparison. The distances

for the different myeloid cell subsets, or RDPs, to the nearest

blood vessel object were next calculated (Figure 6B). Visualiza-

tion of the individual cell distances to the closest blood vessel

demonstrated that, while there was substantial heterogeneity

within a given cell population, both resident cDC1s and cDC2s

(both resident and migratory) were, on average, located in close

proximity to blood vessels (Figures 6B–6D). This was in contrast

to more distal relationships for most migratory CD207+ DCs,

Macs, or RDPs. Pearson correlation coefficients, for the number

of cells per 50-mm-radius neighborhood, further showed that, in

contrast tomigratory DCs, resident cDC1s and cDC2swere both

positively correlated with blood vessels (Figures 6E and S6C).

To explore the cellular microenvironments associated with the

complex vascular networks in LNs (Figure 7A), we next utilized

the ‘‘cell centered neighborhoods’’ function in CytoMAP, which,

instead of raster scanning neighborhoods, generates neighbor-

hoods centered on the positions of the selected objects. This

analysis approach allows a more focused interrogation of the

cellular relationships for the selected population of interest.

Here, 20-mm-radius spherical neighborhoods were centered on

the CD31+ vascular objects to selectively identify vascular-asso-

ciated myeloid cells (Figure 7B). This is demonstrated in Fig-

ure 7B, in which white dots demarcate the centers of all blood

vessel objects, with the example 2D projections of the spherical

neighborhoods (circles) shown to surround individual objects

(yellow dots). All vascular neighborhoods were next clustered

using the SOM algorithm, with the number of regions determined

using the Davies-Bouldin criterion (Figure S7A). This clustering

separated the vascular neighborhoods into several distinct types

(Figures 7C, top color bar, 7D, and S7B), which were next manu-

ally grouped into four major blood vessel phenotypes based on

the local DC composition (Figure 7C, bottom color bar; Fig-

ure S7B). This clustering revealed that, while many neighbor-

hoods were not closely associated with any given myeloid cell

type, unassociated (UN), large portions of the vascular neighbor-

hoods were preferentially associated with either the resident

cDC1s or the cDC2s (Figures 7C–7F). A smaller number of neigh-

borhoods were also associated with CD207+ migratory cells.

t-SNE analysis confirmed these SOM-based annotations and

the differential clustering of neighborhoods based on distinct

myeloid cell associations (Figure 7D). Importantly, 3D spatial re-

mapping of the different vascular subtypes in CytoMAP revealed

that large segments of vascular branches were almost exclu-

sively associated with either the resident cDC1s, cDC2s, or

CD207+ DCs, with little local spatial intermixing (Figures 7E

and S7C–S7E; Video S2). In addition, analysis of the mean num-

ber of blood vessel objects per neighborhood indicated that the

cDC1 and cDC2 cells associate with significantly larger blood

vessels as compared to the CD207+ DCs, likely representing



Figure 6. CytoMAP Analysis of 3D LNs Reveals Preferential Proximity of DCs with Vasculature

(A) Representative confocal image of a 500-mm-thick, Ce3D-cleared, steady-state LN slice. Main image scale bar, 200 mm; zoom-in scale bars, 50 mm.

(B) Violin plot comparing the distances of the indicated cells to the nearest blood vessels within a representative LN sample.

(C) Mean distances of cell populations to the nearest blood vessel, with each symbol representing an individual LN sample. Circles and squares represent

samples from two independent experiments. Cells below the dotted line at 20 mm are considered proximal to vasculature.

(D) Percentage of proximal cells for the LN samples shown in (C).

(E) Heatmap indicating the Pearson correlation coefficients, averaged across all imaged samples, between the number of different cell or landmark object types

per 50-mm-radius neighborhood.

For this experiment, an average imaging volume of 0.93 mm3 and an average of 39,139 myeloid cells, 36,049 blood vessel objects, 98,279 spots, and 36,049

neighborhoods were analyzed per sample. Data represent four samples from two independent experiments.
high endothelial venules versus capillary associations, respec-

tively (Figure 7G). Together, these data indicate that discrete

vascular branch segments are differentially associated with

distinct myeloid cell partners.

DISCUSSION

The importance of quantitative imaging and spatial analysis has

emerged across a diverse spectrum of biological disciplines at

different length scales, from the localization of single molecules

within individual cells to the organization of cells across whole

organs. Various technologies now allow spatially resolved high-

content detection of diverse probe types, from protein and oligo-
nucleotide imaging to lipid visualization (Colomb et al., 2019;

Gerner et al., 2012; Glaser et al., 2019; Goltsev et al., 2018; Gut

et al., 2018; Keren et al., 2018; Li et al., 2017, 2019; Schapiro

et al., 2017; Schulz et al., 2018; Stoltzfus et al., 2015). These ap-

proaches provide an unprecedented level of detail in biological

processes, and as the imaging area and number of analytes in-

crease, the development of tools for analyzing these increasingly

complex and voluminous datasets is critical. Here, we develop a

comprehensive analysis platform, CytoMAP, capable of robust

spatial analysis of cellular organization within tissues. CytoMAP

harnesses the power of unsupervised clustering, dimensionality

reduction, and advanced data visualization to expand the utility

of spatially resolved cellular profiling. CytoMAP integrates data
Cell Reports 31, 107523, April 21, 2020 11



Figure 7. Individual Blood Vessel Branches in LNs Demonstrate Selective Associations with Specific DC Subsets

(A) Confocal image demonstrating the CD31-labeled vascular networks in the same representative LN sample as presented in Figure 6A. Scale bar, 200 mm.

(B) Zoom-in of the region in (A) (denoted with a rectangle), indicating the centers of CD31+ blood vessel objects (white dots). The circles with yellow dots represent

spherical-object-centered neighborhoods with a radius of 20 mm. Scale bar, 20 mm.

(C) Heatmap of the myeloid cell composition for the vessel-centered neighborhoods after SOM clustering. The top color bar indicates color-coded regions of

neighborhoods. The bottom color bar indicates manually annotated regions.

(D) t-SNE plot of neighborhoods from all samples color coded by region from (C).

(E) Positional plot of the vascular neighborhoods in a 200-mm-thick virtual Z section, color coded based on the annotations in (C).

(F) Region prevalence plot showing the percentage of the neighborhoods from each sample in each region.

(G) Mean number of blood vessel objects in each neighborhood for each region showing the size of the vessels associated with each cell type. ****p < 0.0001, as

calculated by repeated-measures one-way ANOVAwithmultiple comparisons. Data represent the same four samples from two independent experiments used in

Figure 6.
on cellular phenotypes and position to identify unique neighbor-

hoods and regions within tissues and organs, which provides

the ability to interrogate complex spatial patterns across hetero-

geneous samples in a matter of minutes (Table S2). Here, we uti-

lized CytoMAP to explore and quantify the organization of

immune cells and microenvironments within lymphoid tissues

as well as in tumor and Mtb-infected lung samples. Our results

show both well-established and previously unappreciated

cellular organization within these tissues. In particular, our find-

ings identify the localization of SIRPa� migratory dDCs within

the lower cortical ridgeof theTcell zonebordering theLNmedulla

aswell as reveal preferential associations of LN-residentDCpop-

ulationswith blood vessel networks in distinct LNcompartments.
12 Cell Reports 31, 107523, April 21, 2020
CytoMAP reduces data complexity in two major ways. First,

CytoMAP treats complex cell objects as individual points, each

possessing information on the positional, morphological, and

phenotypic cellular characteristics averaged over their respec-

tive 3D segmented cellular bodies. Second, CytoMAP defines

raster scanned, or cell-centered, local neighborhoods across

the tissue, effectively binning data on many similarly positioned

cells into single data points. The ability to manipulate the

size of the neighborhoods facilitates exploration of overarching

tissue structure or detailed investigation of the hyperlocal

cellular microenvironments and cell-cell proximities. However,

over-binning the cells into very large neighborhoods may

lead to excessive data smoothing and loss of neighborhood



heterogeneity. Conversely, decreasing the size of the neighbor-

hood size below the size of reasonable cellular networks is likely

to generate noisier data output as well as require extensive

computational resources. Thus, care and empirical testing

should be used when choosing this parameter.

After raster scanning, similar neighborhoods are grouped

together via clustering, which computationally defines unique

tissue regions within highly complex datasets with minimal

user input. Once clustered, CytoMAP provides tools for

exploring the cellular composition and relative prevalence of

the tissue regions within and across samples, as well as for visu-

alizing these regions in 2D or 3D space. Interaction network

maps provide additional detail into how the regions are spatially

interconnected with one another to generate global tissue struc-

ture. Several dimensionality reduction tools in CytoMAP allow

the user to reveal cellular patterning across the tissues as well

as examine the heterogeneity of individual or multiple samples.

Finally, neighborhood-based correlation analysis facilitates the

exploration of how different cell populations are spatially corre-

lated with one another, revealing preferential cellular associa-

tions or mutual exclusivity of different cell types. Together, the

combination of comprehensive and flexible analytical ap-

proaches built into a user-friendly interface makes CytoMAP

a powerful toolbox for the exploration of complex cellular

spatial relationships within large multiplexed spatially resolved

datasets.

One area where spatial analysis tools may provide substan-

tial benefit is in cancer research, in which isolated tumor bi-

opsies have poorly understood cellular organization but still

possess substantial prognostic value. To test CytoMAP with

such heterogeneous tissues, we explored the organization of

immune cells in CT26 tumor samples. This analysis identified

several hallmark features of tumor architecture, including a lym-

phocytic cuff as well as centralized positioning of TAMs, which

corroborates previous histological studies (Keren et al., 2018).

CytoMAP also revealed moderate-to-high baseline infiltration

of CT26 tumors by effector T cells, suggesting that this cancer

model should be susceptible to checkpoint blockade therapy,

which is in line with published data (Kim et al., 2014; Swart

et al., 2016). Interestingly, in addition to different myeloid cell

types localizing to distinct regions within the tumor, t-SNE plots

of the neighborhoods suggest potential additional layers of

cellular organization that should be explored in future studies.

Visualizing these relationships across whole tumor cross-sec-

tions revealed substantial intra-tumoral heterogeneity with

respect to the local composition of myeloid cells and lympho-

cytes. As expected, heterogeneity in cellular composition is

also observed between different samples, even with the use

of a syngeneic cancer model and genetically identical mice.

Thus, sufficient sampling must be performed to provide

adequate representation of the different region subtypes within

individual samples as well as across cohort studies. This sug-

gests that accurate risk/prognostic assessment of neoplastic

tissues may benefit from access to larger tissue samples in

addition to punch core biopsies.

As an additional test of CytoMAP, we analyzed cellular organi-

zation within granuloma structures in a murine Mtb-infected lung

sample. We observed the partial segregation of infiltrating CD4+
T cells from Mtb-infected myeloid cells and the formation of B

cell aggregates. The presence of these distinct tissue regions

as identified by CytoMAP’s clustering algorithm largely agrees

with previous studies describing the organization of Mtb granu-

lomas (Cadena et al., 2017), suggesting that CytoMAP presents

a promising avenue for investigating the spatial organization of

cells in complex inflamed and infected tissues. Given the exten-

sive heterogeneity of granulomas across and even within single

individuals (Flynn et al., 2011), analysis of additional samples is

essential for verification of which regions and tissue structures

are conserved across distinct granulomas. Follow-up work to

dissect this issue is currently underway (Gern et al., 2019; Plum-

lee et al., 2020).

As a final test of CytoMAP, we analyzed the organization of

myeloid cells in steady-state murine LNs. Consistent with previ-

ous observations, we found extensive spatial segregation and a

high degree of mutual exclusivity for many of the DC subsets

within LNs. In addition, we have identified the spatial distribution

of a recently described SIRPa� migratory dDC population

(Ochiai et al., 2014; Tussiwand et al., 2015). These migratory

dDCs appear predominantly localized within the lower cortical

ridge bordering the LN medulla and, together with the locally

positioned SIRPa+ dDCs, generate a prominent cuff-like cellular

aggregate. In addition, analysis of resident cDC1s and cDC2s

supports previous findings, with preferential localization of

cDC2s in the LN periphery and more heterogeneous distribution

of resident cDC1s across the T cell zone (Baptista et al., 2019;

Brewitz et al., 2017; Gerner et al., 2012, 2015, 2017; Kitano

et al., 2016; Leal et al., 2019). Importantly, we found that both

resident cDC1 and cDC2 subsets are highly associated with

LN blood vessels and are preferentially associated with distinct

vascular trees, with little local intermixing. Although previous

studies have shown that DCs can associate with blood vessels

during inflammation (Bajénoff et al., 2003; Dasoveanu et al.,

2016), our findings reveal that this normally occurs in the steady

state and may thereby promote homeostatic maintenance of LN

vasculature (Girard et al., 2012; Moussion and Girard, 2011). Our

findings also suggest that blood vessels could provide positional

cues to guide resident cDC1 and cDC2 distribution in LNs. While

previous studies have identified a role for the G-protein coupled

receptor 183 in guiding resident cDC2 positioning and survival in

lymphoid tissues (Gatto et al., 2013; Yi and Cyster, 2013), little is

known about the regulation of resident cDC1 localization in LNs.

Our study provides hints to a potential mechanism regulating

their distribution and will require further follow-up. Finally, our

findings suggest that DC subset associations with distinct

vascular branches could also influence blood endothelial cell

biology, potentially promoting the recently described heteroge-

neity of LN blood endothelial cells (Takeda et al., 2019; Veerman

et al., 2019).

In sum, here we develop a user-friendly, comprehensive, and

broadly applicable spatial analysis toolbox for analysis of 2D

or 3D quantitative imaging datasets, which excels at utilizing

high-dimensional imaging data to reveal complex tissue fea-

tures based on cellular phenotypic heterogeneity and spatial

patterning. Our technology allows cross-sample interrogation

of spatial cellular relationships and tissue architecture, and

it reveals intra- as well as inter-sample heterogeneity. In this
Cell Reports 31, 107523, April 21, 2020 13



early implementation, CytoMAP has already provided useful in-

sights into the organization of myeloid cells in lymphoid tissues,

revealing the localization of SIRPa� migratory dDCs as well as

identifying preferential associations of resident DCs with select

LN vasculature. Phenotyping neighborhoods with unsupervised

clustering reveal distinct regions that are both biologically

relevant and consistent across multiple samples. Together,

this indicates that CytoMAP is a valuable tool for the rapid

identification of key cellular networks and tissue structure

and for revealing the fundamental building blocks of tissue

organization.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

All antibodies are listed in Table S5 N/A N/A

Chemicals, Peptides, and Recombinant Proteins

Tissue-Tek O.C.T. Compound Electron Microscopy Sciences Cat# 62550-01

BD Cytofix fixation buffer BD Biosciences Cat# 554655

PBS (pH 7.4) Caisson Labs Cat# PBL06-6X500ML

Triton X-100 Sigma-Aldrich Cat# T-9284

Bovine Serum Albumin Sigma-Aldrich Cat# A9576-50ML

Normal Mouse Serum Jackson Laboratories Cat# 015-000-120

Tris buffer (1 M dilute to 0.1M) Fisher Scientific BP1756500

Mix-n-Stain CF Dye Antibody Labeling Kits Biotium Cat# 92433-92339

N-methylacetamide Sigma-Aldrich Cat# M26305

Histodenz Sigma-Aldrich Cat# D2158

1-Thioglycerol Sigma-Aldrich Cat# M1753

High-vacuum grease VWR Cat# DOWC1597418

Agarose Fisher Scientific Cat# 16500500

Immersion Oil, type F Fisher Scientific Cat# NC0586121

EndoFit Ovalbumin 100mg Invivogen Cat# vac-nova-100

Alhydrogel adjuvant 2%, 250mL Invivogen Cat# vac-alu-250

Sucrose, ultrapure DNase- and RNase-free VWR Cat# 97061-432

Experimental Models: Organisms/Strains

Mouse: CD45.2 (B6) 4get OT-II This paper N/A

Mouse: B6.SJL (CD 45.1) Jackson Laboratories Strain # 002014

Mouse: C57BL/6j Jackson Laboratories Strain # 000664

Mouse: Balb/C Charles River Strain # 028

Software and Algorithms

CytoMAP This Manuscript https://gitlab.com/gernerlab/cytomap

Imaris extensions This Manuscript https://gitlab.com/gernerlab/imarisxt_histocytometry

Imaris Bitplane https://imaris.oxinst.com/

LASX Leica Microsystems https://www.leica-microsystems.com/products/

microscope-software/p/leica-las-x-ls/

FlowJo FlowJo, LLC https://www.flowjo.com/

Prism GraphPad Software https://www.graphpad.com/scientific-software/

prism/

MATLAB The MathWorks, Inc. https://www.mathworks.com/products/matlab.

html?s_tid=hp_products_matlab

Other

UltraComp eBeads Compensation Beads Fisher Scientific Cat # 01-2222-42

PAP pen Vector Laboratories Cat# H-4000
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Michael

Gerner (gernermy@uw.edu). This study did not generate new unique reagents.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
For the experiments described in Figure 2, 5-7, 6-10 week old male and female B6.SJL and C57BL/6J mice were obtained from The

Jackson Laboratory and kept in specific pathogen–free conditions at an Association for Assessment and Accreditation of Laboratory

Animal Care–accredited animal facility at the University of Washington, South Lake Union campus. All procedures were approved by

the University of Washington Institutional Animal Care and Use Committee. The influence of the sex of the mice was not assessed.

For the data presented in Figure 3, 6-10 week old female BALB/c mice were obtained from Charles River (Sulzfeld, Germany) and

were housed in specific pathogen-free conditions. The animal facility was accredited by the Association for Assessment and

Accreditation of Laboratory Animal Care and all animal studies were performed in accordance with the guidelines outlined by the

Federation for Laboratory Animal Science Association and the German Animal Welfare law. The animal study was approved by

and done under license obtained from the Government of Upper Bavaria (Regierung von Oberbayern; license number: ROB-55.2-

2532.Vet_03-15-41).

For the experiment described in Figure 4, an 8 week old female C57BL/6J mouse was obtained from The Jackson Laboratory and

housed in specific pathogen-free conditions at Seattle Children’s Research Institute (SCRI). Experiments were performed in compli-

ance with the SCRI Animal Care and Use Committee.

LN studies
For the experiment shown in Figure 2, a male C57BL/6 mouse was adoptively transferred with 10̂ 6 naive OT-II CD4+ T cells and one

day later immunized in the footpad with OVA plus Alum; 4.5 days later the draining popliteal LN was harvested and used for analysis.

For the experiments shown in Figure 5, non-draining steady-state skin LNs were harvested frommale C57BL/6mice which were pre-

viously injected in the contralateral distal footpadwith Alum 2 days before harvest. For the experiments shown in Figures 6 and 7, skin

LNs were harvested from naive male C57BL/6 mice. No differences in the localization or abundance of the various myeloid cell types

under investigation have been observed between naive versus non-draining baseline LNs.

Tumor studies
Balb/C mice were injected subcutaneously with 5x10̂ 6 CT26.WT cells and 9 days later, the tumor was harvested for fixation and

imaging.

Mtb studies
All infections were done with a stock of Mtb H37Rv, as previously described (Urdahl et al., 2003). To perform aerosol infections,

C57BL/6 mice were enclosed in a Glas-Col aerosol infection chamber, and Mtb bacilli were deposited directly into their lungs. Lungs

were removed 34 days post infection.

METHOD DETAILS

Tissue preparation – thin sections
All thin tissue sections were fixed with Cytofix (BD Biosciences) buffer diluted 1:3 with PBS for 12h at 4�C and then dehydrated with

30% sucrose in PBS for 12-24h at 4�C. Tissues were next embedded in O.C.T. compound (Tissue-Tek) and stored at �80�C. LNs
were sectioned on a Thermo Scientific Microm HM550 cryostat into 20 mm sections and were then prepared and imaged as previ-

ously described (Gerner et al., 2012). Briefly, sections were stained with panels of fluorescently conjugated antibodies, shown in

Table S1, coverslipped with Fluoromount G mounting media (SouthernBiotech), and imaged on a Leica SP8 microscope. Antibody

panels were designed to detect various innate and adaptive immune populations. In some analyses, limitations to themaximumnum-

ber of analytes per panel precluded the discrimination of certain populations, such as migratory cDC1 and Langerhans cells. Certain

discriminatory markers typically used in flow cytometry, such as cDC1-associated CD103 and XCR1, are not easily usable for

confocal imaging due to epitope loss after paraformaldehyde fixation.

Tissue preparation – thick slices
Volumetric imaging using Ce3D tissue clearing (thick sections) was performed as previously described (Li et al., 2017, 2019). In

brief, LNs were fixed with Cytofix (BD Biosciences) buffer diluted 1:3 with PBS for 12-20h at 4�C. Excess fat was carefully removed

using a dissection microscope, and the samples were embedded in 2% Agarose. 500 mm thick cross-sectional slices were gener-

ated using a Vibratome (Leica VT1000S, Speed: 215 Frequency: 8). Slices were next placed in blocking buffer (1%NMS, 1%BSA,

0.3%Triton, in 0.1MTris) for 24h at 24�C on a rocker. After blocking, LN slices were stained with a panel of directly conjugated an-

tibodies (Table S1) for 3 days at 34�C on a shaker, then washed in blocking buffer for one day at 24�C. Next, slices were placed in

Ce3D clearing solution (13.75ml 40% [vol/vol diluted with PBS] N-methylacetylamide; 20 g Histodenz; 25uL Triton X-100; 125ul

Thioglycerol) at 24�C for at least 24h. Finally, slices were coverslipped using Ce3D as the mounting media and imaged on a Leica

SP8 microscope.
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Imaging
All samples were imaged using a Leica confocal SP8 microscope, with either a 40X 1.3NA (HC PL APO 40x/1.3 Oil CS2, for 20 mm

sections) or a 20X 0.75NA (HC PL APO 20x/0.75 IMMCORRCS2, free working distance = 0.68mm, for thick cleared slices) oil objec-

tive with type F immersion liquid (Leica, refractive index ne = 1.5180). After acquisition, stitched images were compensated for spec-

tral overlap between channels using the Leica Channel Dye Separation module in the Leica LASX software. For single stained con-

trols, UltraComp beads (Affymetrix) were incubated with fluorescently conjugated antibodies, mounted on slides, and imaged with

the samemicroscope settings used in the image they were being used to compensate. In all figures, for visual clarity, thresholds were

applied to the displayed channel intensities.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image analysis and histo-cytometry
Image analysis and histo-cytometry was performed as described previously, with minor modifications (Gerner et al., 2012; Li et al.,

2017, 2019). Briefly, using Imaris, various steps were taken to process the images, identify the signal that belongs to each individual

cell (segment cell objects) or identify where a signal is without identifying specific cells that signal belongs to (generate landmark

spots). Generating spots creates spherical objects centered on any pixels with signal above a user set threshold (Table S3). These

spots allow for rapid digitization of the location of signal, without the need for accurate segmentation of cell bodies, and is useful for

landmark channels, where the respective signal is not used to annotate specific cell types, but only to delineate the physical borders

of specific tissue regions. Unless otherwise noted, only the channel arithmetic and surface or spot creation steps for each sample

shown in Table S3 were used to process the images. Channel arithmetic were performed using either the default Imaris function

or a customized ImarisXT extension, Calebs_Multi_EQ_ChannelArithmetics_V3, which allows for batching multiple equations and

auto saving the image once the function is done running. Additional normalization and processing steps for specific samples are

described below. After surface creation, the MFI for each imaged channel, as well as the volume, sphericity, and position of the

cell objects were exported and concatenated into a single .csv file using the Imaris_To_FlowJo_CSV_Converter_V4 MATLAB func-

tion, which is a customized .csvmerge tool. The combined .csv file was next imported into FlowJo (TreeStar) and the cell objects were

classified into the indicated cell subsets according to the gating strategies shown in the respective figures.

For the experiments described in Figure 2, using Imaris version 8.3 the All Cell Composite channel was created using the equation

in Table S3. Using the surface creation tool in Imaris, masking surfaces were created around this new channel using the parameters

for surface_1 shown in Table S3. Using the mask option, all pixels from the new channel outside the boundaries of this surface were

set to equal 255 (themaximumpixel intensity). Next the new channel was smoothedwith aGaussian filter with awidth of 0.56 mm. This

new channel was then inverted, and the gammawas set to 0.3. Finally, cell object surfaces were created using the inverted new chan-

nel with the properties shown in Table S3 for surface_2.

For both experiments shown in Figure 6, all image layers were first normalized along the Z axis. For experiment 1, a clean CD31

channel was created to correct for residual channel spillover from the Lyve1 channel. Next a composite channel of myeloid cell

markers was created according to the equation in Table S3. Finally, surfaces were created according to the parameters in Table

S3. For the images from the second experiment, channels SIRPa, B220, MHC-II, CD31, and CD11c were smoothed using the Imaris

Gaussian Smooth function with a width of 0.56 mm. Next, a composite channel of myeloid cell markers was created according to the

equation in Table S3. Finally, surfaces were created according to the parameters in Table S3.

For the image of the lung shown in Figure 4, a composite of all surface markers was created using the equation in Table S3. The

linear stretch function in Imaris was used to set the blackpoint of this channel to 40, gamma was adjusted to 0.75, and Gaussian

smoothing was used with a width of 0.32um. The Jojo1 nuclear stain channel was brightened with the linear stretch function in Imaris

to set the saturation point to 200, gamma was adjusted to 1.5, and Gaussian smoothing was used with a width of 0.32um. The all

surfacemarker channel was then subtracted from the altered Jojo1 channel to form a ‘‘Nuclei’’ channel according to Table S3. Finally,

surface objects were created in Imaris on this new channel using the parameters outlined in Table S3. A small number of the Mtb+

objects were identified outside the granuloma in the images. These appeared extra-cellular and likely represented imaging artifacts;

they were not selectively removed from analysis to avoid introducing user bias.

Statistical analysis
No statistical method was used to predetermine sample size. The statistical significance of Pearson’s correlation was calculated us-

ing a Student’s t distribution for a transformation of the correlation.

CytoMAP spatial analysis
CytoMAP was written using MATLAB version 2018b (Mathworks). A detailed description of the workflow and functions built into

CytoMAP is available in the online user manual. Below is a brief discussion of the analysis used for the datasets described in this

manuscript. The annotated cell surfaces for each dataset were loaded into CytoMAP by importing the corresponding paired .wsp

and .fcs files after saving them in FlowJo. These collectively contain the cell statistics, gate definitions, and spatial positions for

each cell object. Once imported the following functions were used in CytoMAP to analyze the data.
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Generate Random Points

This function, found in the ribbon at the top of the figure window, uses MATLAB’s built in rand function, with all default parameters, to

generate a set of random points based on the set of currently plotted points in the New Figure window. This function only generates

randomized data with respect to the axes which are plotted, while setting all other channel values to 0 for the new set of points. Addi-

tionally, this function scales the randomized values to be within the limits of the currently plotted points. To generate points with a

random spatial distribution, all cells were first plotted with positions on the X and Y axes. Next, the Generate Random Points function

was called and this newly generated set of points was saved. Finally, all points outside the spatial bounds of the tissue were dis-

carded by gating on objects within the tissue boundaries, resulting in sets of RDPs for each sample analyzed, with a representative

set of points shown in Figure S4B.

Make Surface

This function uses MATLAB’s alphaShape function, with user defined parameters, to wrap the currently plotted points in a surface.

This surface can then be used to gate on points, such as randomly distributed points, and to calculate the distance to region borders.

This function was used to generate the surfaces shown in Figure 5F.

Calculate Distance

This function finds the physical distance, either to the border of user defined surfaces, or to the nearest cell. This function was used to

find the distance to region borders plotted in Figure 5 G-J, and the distance between myeloid cells and the nearest blood vessel

plotted in Figure 6B.

Raster Scan Neighborhoods

This function uses Neighborhood analysis, which finds the local composition of cells within a circular (2D data) or spherical (3D data)

area/volume in the tissue. If the data have non-zero z dimensionality but the z thickness is less than the radius of the neighborhoods,

this function will treat the data as effectively 2D and use a cylindrical neighborhood window. This function calculates the number of

cells and theMFI of each channel summed over all cells in each neighborhood. The positions of the neighborhoods are evenly distrib-

uted throughout the tissue in a grid pattern with a distance between neighborhood centers of half of the user defined radius. The

neighborhood information can then be used for further analysis (e.g., local cellular densities, cell-cell associations). Unless otherwise

noted, all neighborhoods described in this manuscript were defined using this function.

Cell Centered Neighborhoods

This function is similar to Raster Scan Neighborhoods, except the position of the neighborhoods are centered on a user selected cell

type. Once the cell type is chosen and the radius is defined, this function calculates the number of cells and the MFI of each channel

summed over all cells in each neighborhood. Only the neighborhoods described in Figure 7, and S7 were defined using this function.

Classify Neighborhoods Into Regions

This function is used to define tissue regions using multiple types of information about the neighborhoods. This includes, the stan-

dardized number of cells of each phenotype in each neighborhood (number of cells minusmean number of cells, divided by the stan-

dard deviation of the number of cells in each neighborhood across the dataset), composition (number of cells divided by the total

number of cells in each neighborhood) and raw number of cells per neighborhood, which were used as indicated in the respective

figures. In this manuscript, the physical position of the neighborhoods was not used for region definition and the minimum of the

Davies-Bouldin function was used to automatically determine the number of regions. The neighborhoods were clustered using

the SOM function. This utilizes MATLAB’s selforgmap function with default parameters, except the dimensions options, which is

equal to the number of regions (NR) by one, i.e.

app:net:ðModelNameÞ:Network = selforgmapð½NR; 1�Þ
Once the network parameters are defined, the network is trained on the neighborhood data using MATLAB’s train function. This as-

signs a cluster number to each neighborhood. The selforgmap algorithm starts with NR ‘‘neurons’’ positioned throughout the data. It

then iteratively moves the position of the neurons closer to the data to match the landscape of the data. Here, the position is not the

spatial position, but the topological position within the cell composition data. The neighborhoods are then clustered by finding the

closest neuron for each neighborhood. For visualization purposes the arbitrarily color designations of the individual regions were

changed using the Edit Region Colors function in CytoMAP. The composition of the color-coded neighborhoods was plotted using

the Heatmap Visualization function in CytoMAP. The spatial distribution of the regions was visualized by generating a new figure in

CytoMAP, plotting the positions of the neighborhoods, and selecting the regions for the ‘c’ axis to color-code the neighborhoods by

region type.

Reduce Dimensions

Dimensionality reduction algorithms can be used to visualize tissue structure and complexity, as well as for sample-to-sample com-

parison. These dimensionality reduction techniques also help reveal how the tissue neighborhoods are organized to generate global

tissue structure. In CytoMAP this function uses MATLAB implementations of multiple dimensionality reduction techniques. Informa-

tion about the neighborhoods including the standardized number of cells of each phenotype in each neighborhood (number of cells

minus mean number of cells, divided by the standard deviation of the number of cells in each neighborhood across the dataset),

composition (number of cells divided by the total number of cells in each neighborhood) or raw number of cells per neighborhood

can be used. For t-SNE and PCA we used the built in MATLAB implementations. For the t-SNE plots in this manuscript the default

MATLAB options were used, including: Euclidian distance, perplexity of 30, theta, of 0.5, and exaggeration of 4. We used the
e4 Cell Reports 31, 107523, April 21, 2020



MATLAB implementation of UMAP, with default parameters, provided by the Herzenberg Lab at Stanford University available for

download at: https://www.mathworks.com/matlabcentral/fileexchange/71902-uniform-manifold-approximation-and-projection-

umap.We used theMATLAB implementation of PHATE, with default parameters, provided by Krishnaswamy Lab available for down-

load at: https://github.com/KrishnaswamyLab/PHATE.

Pseudo-Space

Pseudo-space, reduces the complexity of cell distribution across tissues into a one-dimensional plot, helping reveal the fundamental

positional relationships of cells with respect to one another. This function allows the user to sort the neighborhoods by the absolute

number or composition of different cell types within the neighborhoods and plots the neighborhoods in this sorted order on a linear

Pseudo-space axis. The y axis is normalized to allow comparison between cell types, and the data are smoothed along the x axis by

a user defined amount. This function was used with the data type, weights, and smoothing parameters for each figure shown in

Table S4.

Cell-Cell Correlation Analysis

The local cell density within individual neighborhoods can be used to correlate the location of different cell types, revealing which cell

populations preferentially associate with one another, or conversely avoid one another. This function calculates the Pearson corre-

lation coefficient of the number of cell or object types within the scanned neighborhoods and graphs these on a heatmap plot. This

correlation analysis can be performed across multiple samples, and can be done either over entire tissues or within specified tissue

regions. This is important, as cells may have distinct associations with one another in different tissue compartments.

Network Map

Region interaction networkmapping calculates which regions preferentially border one another within the samples. This function cal-

culates the percentage of neighborhoods of each region type which are directly in contact with each other region type. It creates a

force directed graph with a node for each region type, where the nodes are connected by an edge if more than 0.005% of the neigh-

borhoods of that nodes type are in contact with the connecting node’s region type. The edge thickness is proportional to the % of

neighborhoods in contact with the connecting node region type, and the node size is proportional to the number of neighborhoods of

the region type.

DATA AND CODE AVAILABILITY

All data are available upon request. Imaris extensions and other scripts used for histo-cytometry analysis are available for download

at: https://gitlab.com/gernerlab/imarisxt_histocytometry. CytoMAP software is available for download at: https://gitlab.com/

gernerlab/cytomap.
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Figure S1. Identification of basic LN architecture with CytoMAP, Related to Fig. 2. A, Positional plots 
of neighborhoods obtained by using the indicated radius for raster scanning, with the neighborhoods being 
color coded by regions obtained from SOM clustering. B, The minimum Davies-Bouldin value (denoted 
by the arrow) was used to determine the number of regions presented in Fig. 2D. C, The same LN dataset 
as presented in Fig. 2A, demonstrating the out-of-plane noise in the CD3 channel within the maximum 



projection image (left) or a single Z-slice (Z=5, right). Overview image scale bar = 200µm; zoom-in scale 
bar = 50µm. D, Extended t-SNE analyses, for t-SNE plots made using the non-standardized composition of 
the neighborhoods. These plots are color-coded heatmaps of the total MFI signal or number of cells in each 
neighborhood for the indicated markers or cell types. E, Same t-SNE as in panel D, with the neighborhoods 
color-coded according to the regions defined in Fig. 2D on the left and manually drawn gates on the right. 
F, Gated neighborhoods were positionally remapped using the color definitions from the gates shown in 
the right plot in panel E. G, Interaction map showing the percentage of shared border between regions, 
defined using varying neighborhood radii, also shown in panel B. The regions found with a radius of 30µm 
are from Fig. 2D. The white node represents area external to the tissue. The node size is proportional to the 
prevalence of that region within the sample (number of neighborhoods per image). Lines connect regions 
that share borders, with the line thickness being proportional to the percent of the border shared between 
the regions. 
  



 



Figure S2. Quantitative analysis of tumor immune infiltrate, Related to Fig. 3. A, Histo-cytometry 
plots of the gating strategy used to annotate the cell types for the sample analyzed and presented in Fig. 3. 
B, Comparison of regions between four models trained on either all samples (bottom row of panel, also 
presented in Fig. 3C-F), or all samples except the sample denoted with the red X. On the left column of this 
panel are the Davies-Bouldin values, with the minimum denoted by the arrow. The middle three columns 
show the spatially remapped color-coded neighborhoods. The rightmost column of this panel shows the 
normalized fold change (fold change in the number of cells per neighborhood from each region, compared 
to the average number of cells in neighborhoods from all regions and samples). C, t-SNE plots of 
neighborhoods, color coded according to the corresponding model, as defined in panel B. D, Heatmap of 
the p-values for the corresponding Pearson correlation coefficients presented in Fig. 3H. High p-values 
correspond to correlation coefficients not significantly different from 0.  
  



 

 
Figure S3. Quantitative analysis of lung Mtb granulomas, Related to Fig. 4. A, Histo-cytometry plots 
showing the gating strategy used to annotate the cell types presented in Fig. 4B. The cell objects extracted 
from the uninvolved lung image are on the left and the granuloma image are on the right. B, The Davies-
Bouldin values used to determine the number of regions in the neighborhood dataset, with the SOM 
clustering presented Fig. 4C. The neighborhoods were clustered into 6 regions based on these values. Since 
there are two very different regions in this dataset (lung and granuloma) the minimum of the Davies-Bouldin 
yields only two regions. However, the local minimum at 6 regions reveals both the difference between the 
lung and granuloma neighborhoods, as well as the different regions within the granuloma. C, The color-
coded position plot of the regions if 2 regions were used based on the absolute minimum from the Davies-
Bouldin function. This plot demonstrates two distinct regions, the uninvolved lung (cyan) and the 
granuloma (yellow). D, The p-values for the corresponding Pearson correlation coefficients presented in 
Fig. 4F. High p-values correspond to correlation coefficients not significantly different from 0. 
  



 



Figure S4. Quantifying myeloid cell organization in LNs, Related to Fig. 5. A, Two independent 
representative histo-cytometry plots demonstrating the gating strategy used to annotate cell types and 
landmark spots in the dataset presented in Fig. 5. B, Positional plots of the landmark spots (top left), 
indicated cell populations, and RDP (bottom right) overlaid on the manually annotated regions, as shown 
in Fig. 5F. C, Multi-parameter confocal microscopy image of the same representative LN shown in Fig. 
5A. Scale bar = 200µm, zoom-in scale bar = 50µm. Arrows on zoom-in denote Clec9a+ cells. D, Histo-
cytometry gating showing increased expression of Clec9a on resident cDC1 cells. E, Bar graph showing 
the percentage of Clec9a+ cells that are in the migratory or resident DC gates. F, Bar graph showing the 
mean Clec9a expression of Clec9a+ migratory and resident cDCs.  
  



 
Figure S5. CytoMAP reveals patterns of myeloid cell organization in LNs, Related to Fig. 5. A, Color-
coded spatial plots of the neighborhoods, demonstrating the distribution of CytoMAP generated regions 
across all of the LNs presented in Fig. 5. B, The minimum Davies-Bouldin value, denoted by the arrow, 
used to determine the number of regions presented in Fig. 5D. C, Region prevalence plot showing the 
percentage of the neighborhoods from each sample in each region. Manually annotated region groups, used 



to define the surfaces shown in Fig. 5F, are shown in the bottom color label. D, UMAP plot of 
neighborhoods from all samples, as color coded by region type shown in panel A. E, Violin plots of the 
distances for all cells from each LN. The means of these distances are shown in Fig. 5H-J. TZ+IFZ distance 
analysis for LN1 are the same data as presented in Fig. 5G. F, Combined analysis for Fig. 5I and 5J. Plot 
demonstrates the average distance of the indicated cell populations to the B cell follicle versus the CMC, 
with each dot representing an individual sample. G, Heatmaps of the p-values for the Pearson correlation 
coefficients shown in Fig. 5K. High p-values correspond to correlation coefficients not significantly 
different from 0. Data represent 5 samples from one experiment. 
  



 
Figure S6. Identification of DC subsets in 3D LNs, Related to Fig. 6. A, Histo-cytometry hierarchical 
gating of the cell populations extracted from two representative samples, one for each experiment, for the 
data presented in Fig. 6. The classifier is a manually added parameter used to distinguish between different 
sets of surface objects for gating purposes. B, 3D spatial remapping of the cell objects annotated in panel 
A. C, Heatmap of the p-values for the Pearson correlation coefficients presented in Fig. 6E. High p-values 
correspond to correlation coefficients not significantly different from 0. Data represent four samples from 
two independent experiments. 



 
Figure S7. Characterization of blood vessel branches in LNs, Related to Fig. 7. A, The minimum 
Davies-Bouldin value, denoted by the arrow, was used to determine the number of regions used for SOM 
clustering presented in Fig. 7C. B, Percentage of neighborhoods in each cluster as defined in Fig. 7C. C, 
Pseudo-space plot of the neighborhoods from all 4 samples showing the cellular relationships across the 
different types of vascular neighborhoods. D, Positional plots of the vascular neighborhoods in 200μm thick 
virtual Z sections, also color-coded based on the manual annotations in the bottom color bar of Fig. 7C and 
panel B. E, Heatmap showing the Pearson correlation coefficients between the number of different cell or 
landmark object types per neighborhood for neighborhoods from all samples. Correlation was either 
calculated for all neighborhoods from all regions, or only neighborhoods from a specific region. Data 
represent four samples from two independent experiments.  
  



Table S1. Antibody staining panels, Related to STAR Methods 
Ch Antibody Fluorophore 
Fig. 2 
1 CD3 BV421 
2 TCF1 PacBlue 
3 CD45.2 (OT-II) BV510 
4 CXCR3 PE 
5 MHC-II AF594 
6 Ki67 AF700 
7 B220 CF750 
8 anti-GFP AF488 
9 CD11c AF647 
Fig. 5 
1 CD64 PE 
2 SIRPa CF594 
3 CD207 AF488 
4 CD169 CF514 
5 Lyve1-biotin SA-490LS 
6 CD11c BV421 
7 CD31 BV480 
8 MHC-II Dy395xl 
9 Clec9a CF633 
10 CD301b CF660 
11 B220 AF700 
12 CD3 APC-Fire750 
Fig. 6 Experiment #1 
1 CD31 BV421 
2 CD11c BV480 
3 B220 Dy405ls 
4 Clec9a CF633 
5 CD207 AF488 
6 CD169 CF514 
7 SIRPa CF594 
8 Lyve1 eFluor570 
9 CD301b CF660 
10 MHC-II AF700 
Fig. 6 Experiment #2 
1 CD169 CF514 
2 CD3 AF700 
3 Lyve1-biotin SA-CF750 
4 SIRPa BV421 
5 B220 BV510 
6 MHC-II Dy395xl 
7 Clec9a CF633 
8 CD31 AF488 
9 CD207 AF546 
10 CD11c eFluor615 
Fig. 3 
1 SIRPa BV421 
2 CD11c BV480 
3 CD8 BV510 
4 MHC-II Dy396xl 
5 Clec9a asheep-CF633 
6 PCREB AF488 
7 IRF4 CF514 
8 B220-biotin SA-490ls 
9 CD64 CF660 
10 CD3 AF700 
11 PD1 agoat-CF750 
12 Foxp3 eF570 
13 PD-L1 CF594 



Fig. 4 
1 iNOS AF405 
2 CD11c BV480 
3 CD11b BV510 
4 B220 DY405LS 
5 CD3 CF633 
6 pS6 AF488 
7 IFNg PE 
8 Jojo-1 iodide  
9 IRF4 CF594 
10 CD4 CF660 
11 MHC-II AF700 
12 Mtb a-rabbit-CF750 

 
Table S2. Processing time for key CytoMAP analysis steps on a Laptop (8 GB RAM, Intel® Core™ i7-
7500U CPU @ 2.70GHz 2.90GHz) vs. Workstation (192 GB RAM, Intel® Xeon® Gold 5122 CPU @3.60 
GHz 3.60GHz (2 processors)) , Related to STAR Methods 

Dataset  Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 
Description 1 LN cross section 3 tumor cross 

sections 
2 regions from 

lung cross section 
5 LN cross 

sections 
4 thick LN 
volumes 

Total imaged volume, mm3 0.03 1.8 0.12 0.115 3.72 
Number of channels 9 13 12 12 10 

Number of objects 139,399 171,155 176,647 454,790 867,420 
Neighborhood radius, µm 30 50 50 30 20 

Number of Neighborhoods 11,328 192,785 12,075 63,540 144,196 
Time to define neighborhoods, minutes 

Laptop 2.5 18.8 3.2 17.7 203.1 
Workstation 0.4 3.7 0.3 1.8 173.3 

Time to determine number of regions, minutes 
Laptop 1.3 8.8 0.8 5 15.1 

Workstation 1.1 6.2 0.7 3.5 9.8 
Time to cluster neighborhoods, minutes 

Laptop 0.1 0.3 0.1 0.3 91.5 
Workstation 0.1 0.2 0.1 0.3 8.7 

 
Table S3. Image Analysis and histo-cytometry, Related to STAR Methods 

Channel Arithmetic 
Channel name/Sample Description  Equation  
Fi. 2 
All Cell Composite CD3 + 0.5*CD45.2 + MHC-II (ch1 .* 0.5) + (ch3.* 0.5) + ch5 
Fig. 3  
Composite 
Lymphocyte 

CD3+2*B220 ch10+(2.*ch8) 

Composite Myeloid CD11c+MHC-II+1.3*CD64 ch2+ch4+(1.3.*ch9) 
Fig. 4  
Composite Surface 
Markers 

[(CD11c>14)/175 + (CD11b>10.5)/160 + 
(B220>15)/130 + (CD3>30)/170 + 
(MHC-II>20)/165]*150 

(ch2.*(ch2>14)./175 + ch3.*(ch3>10.5)./160 + ch4.*(ch4>15)./130 + 
ch5.*(ch5>30)./170 + ch11.*(ch11>20)./165).*150 

Nuclei Jojo1 – Composite Surface Markers ch8 - ch13 
Fig. 5 
clean-CD31 corrected spillover from CD11c (ch7-ch6).*(ch7>ch6) 
clean-SIRPa corrected spillover from CD31 (ch2-ch7).*(ch2>ch7) 
clean-CD169 exclude CD207+ subtract CD31 (ch4-ch13).*(ch4>ch13).*(ch3<70) 
clean-CD11c corrected spillover from CD31 (ch6-ch13).*(ch6>ch13) 
clean-MHC-II exclude B220 (ch8-ch11).*(ch8>ch11) 
Composite Myeloid clean-SIRPa + CD207 + clean-CD169 + 

clean-CD11c + clean-MHC-II + Clec9a 
(ch14.*0.75) + (ch3.*0.75) + (ch15.*0.5) + (ch16.*0.9) + (ch17.*0.75) 
+ (ch9 .* 0.75 .*(ch9>50)) 

Fig. 6 Experiment #1  
Clean CD31 CD31-0.1*Lyve1 (ch1-0.1.*ch8).*(ch1>0.1.*ch8) 
Composite Myeloid CD11c + Clec9a + CD207 + CD169 + SIRPa 

+ CD301b + MHC2 
ch2+ch4+ch5+ch6+ch7+ch9+(ch10.*4) 

Fig. 6 Experiment #2  



Composite Myeloid CD169 + 2*SIRPa + 2.5*MHC-II(B220<55) 
+ Clec9a+CD207 + 1.5*CD11c - B220 - CD3 
+ min("") 

((1.5.*ch1.*(ch1>5) + 3.8.*ch4.*(ch4>5) + 
2.5.*ch6.*(ch6>5).*(ch5<40) +2.*ch7.*(ch7>5) + ch9.*(ch9>5) + 
2.*ch10.*(ch10>5)-0.5.*ch3-0.5.*ch5) +min(min((1.5.*ch1.*(ch1>5) + 
3.8.*ch4.*(ch4>5) + 2.5.*ch6.*(ch6>5).*(ch5<40) +2.*ch7.*(ch7>5) + 
ch9.*(ch9>5) + 2.*ch10.*(ch10>5)-0.5.*ch3-0.5.*ch5))))./2 

Surface creation parameters 
Surface 
Spots Name 

Source 
Channel  

Smoothing: 
Surface 
Detail (µm) 

Background 
Subtraction: 
Diameter of 
Largest 
sphere 

Absolute 
Intensity 
Threshold 

Split 
Touching 
Objects: 
Split seed 
diameter 
(µm) 

Quality 
Threshold 

Voxel 
Number 
Threshold 

Sphericity 
Threshold 

Diameter 
(Spots) 

Fig. 2  
Surface_1 All Cell 

Composite 
20  8      

Surface_2 Inverted Ch 0.655  107 3.28 8.28 10-2781 0.583  
Fig. 3  
Myeloid 
Surfaces 

Composite 
Myeloid  

0.6 11 20 11 5 50-7103   

Lymphocyte 
Surfaces 

Composite 
Lymphocyte  

0.6 10 9 6 2.5 50   

Fig. 4  
All Cells Nuclei 0.63 10 18.5 3.16 6.08 10   
Fig. 5  
Myeloid 
Surfaces 

Composite 
Myeloid 

0.758 25 7-22  
(Sample 
Dependent) 

7.5-10 
(Sample 
Dependent) 

4.5 300   

All Spots B220     13.1   3 
Fig. 6 Experiment #1  
Myeloid 
Surfaces 

Composite 
Myeloid 

1.5 12 20 12 10 50   

CD31 
Surfaces 

Clean CD31 2.5 15 2.25 4 3.5 150   

Lyve1 Spots Lyve1  true   2   5 
B220 Spots B220  true LN1 

(false LN2) 
  1.5 LN1 

(7.5 LN2) 
  5 

Fig. 6 Experiment #2  
Myeloid 
Surfaces 

Composite 
Myeloid 

0.8 11 40 10 6 50   

CD31 
Surfaces 

CD31 2 5 2 4 2.5 50   

Lyve1 Spots Lyve1  false   20   5 
B220 Spots B220  false   40   5 

 
Table S4. Pseudo-space input parameters, Related to STAR Methods 

Fig. 2F 
Data Preparation: Neighborhood Composition 
Cell Type Weight Smoothing 
B cells -1 500 
T Cells 1 500 
DCs 0.2 500 
Fig. 3G 
Data Preparation: Number of cells per Neighborhood 
B cells 1 10000 
Teff 0 10000 
Treg 5 10000 
TAM -2 10000 
DCs 0 10000 
aMACs. 1 10000 
SIRPaDIMMHC-II+ -1 10000 
Fig. 4E 
Data Preparation: Number of cells per Neighborhood 
B Cells 1 1000 
Alv. Macs -50 1000 
CD11b+  0 500 
DCs 0 1000 
Mtb+ Cells 100 100 



T Cells CD4- 1 1000 
T Cells CD4+ 1 1000 
Fig. S7C 
Data Preparation: Number of cells per Neighborhood 
Blood vessels -0.1 5000 
CD207+ 1 5000 
cDC1 10 5000 
cDC2 20 5000 
Med. Macs. -0.1 5000 
SCS Macs. -0.1 5000 
RDP 0 5000 

 
Table S5. Antibodies, Related to STAR Methods 

B220 -biotin (clone RA3-6B2) BioLegend Cat# 103204 
B220 -BV510 (clone RA3-6B2) BioLegend Cat# 103247 
B220 -AF700 (clone RA3-6B2) BioLegend Cat# 103232 
B220 -CF750 (clone RA3-6B2) [Conjugated in house] BioLegend Cat# 103202 
B220 -DY405LS (clone RA3-6B2) Novus Biologicals Discontinued 
CD3 -BV421 (clone 17A2) BioLegend Cat# 100228 
CD3 -AF700 (clone 17A2) BioLegend Cat# 100216 
CD3 -APC-F750 (clone 17A2) BioLegend Cat# 100247 
CD3 -CF633 (clone 17A2) [Conjugated in house] BioLegend Cat# 100202 
CD4 -CF660 (clone RM4-5) [Conjugated in house] BioLegend Cat# 100506 
CD8 -BV510 (clone 53-6.7) BioLegend Cat# 100752 
CD11b -BV510 (clone M1/70) BD Cat# 562950 
CD11c -BV421 (clone N418) BioLegend Cat# 117330 
CD11c -AF647 (clone N418) BioLegend Cat# 117312 
CD11c -eFluor615 (clone N418) eBioscience Cat# 42-0114-82 
CD11c -BV480 (clone HL3) BD Cat# 565627 
CD31 -BV421 (clone 390) BioLegend Cat# 102424 
CD31 -BV480 (clone 390) BD Cat# 746260 
CD31 -AF488 (clone Mec 13.3) BioLegend Cat# 102513 
CD45.2 -BV510 (clone 104) BioLegend Cat# 109838 
CD64 -PE (clone X54-5/7.1) BioLegend Cat# 139304 
CD64 -CF660c (clone X54-5/7.1) [Conjugated in house] BioLegend Cat# 139302 
CD169 -CF514 (clone 3D6.112) [Conjugated in house] BioLegend Cat# 142402 
CD207 -AF488 (clone 929F3.01) Fisher Scientific Cat# DDX0362A488 
CD207 -AF546 (clone 929F3.01) Fisher Scientific Cat# DDX0362A546 
CD301b -CF660 (clone URA1) [Conjugated in house] BioLegend Cat# 146802 
Clec9a -asheep-CF633 (sheep polyclonal) R&D Cat# AF6776 
CXCR3 -PE (clone CXCR3-173) Fisher Scientific Cat# 12-1831-82 
Foxp3 -eF570 (clone FJK-16s) eBioscience Cat# 41-5773-82 
IFNg -PE (clone XMG1.2) BioLegend Cat# 505807 
iNOS -AF405 (clone C-11) Santa Cruz Cat# sc-7271 
IRF4 -CF514; -CF594 (clone IRF4.3E4) [Conjugated in house] BioLegend Cat# 646402 
Jojo-1 iodide Invitrogen Discontinued 
Ki67-AF700 (clone B56) BD Cat# 561277 
Lyve1 -biotin (clone ALY7) eBioscience Cat# 13-0443-82 
Lyve1 -eFluor570 (clone ALY7) eBioscience Cat# 41-0443-82 
MHC-II -AF700 (clone M5/114.15.2) BioLegend Cat# 107622 
MHC-II -AF594 (clone M5/114) Novus Biologicals Cat# NBP2-21789AF594 



MHC-II -Dy395xl; -Dy396xl; (clone M5/114.15.2) [Conjugated in house] BioLegend Cat# 107602 
Mtb -anti-rabbit-CF750 (rabbit polyclonal) Abcam Cat# Ab905 
PCREB -AF488 (clone 87G3) Cell Signaling Cat# 9187S 
PD1 -agoat-CF750 (goat polyclonal) R&D Cat# AF1021 
PD-L1 -CF594 (clone MIH5) eBioscience Cat# 14-5982-82 
pS6 -AF488 (clone 2F9) Cell Signaling Cat# 4854S 
SIRPa -BV421 (clone P84) BD Cat# 624124 
SIRPa -CF594 (clone P84) [Conjugated in house] BioLegend Cat# 144002 
TCF1 -PacBlue (clone C63D9) Cell Signaling Cat# 9066S 
anti-rabbit-AF750 Invitrogen Cat# A-21039 
SA-AF750 Invitrogen Cat# S21384 
SA-ATTO490LS ATTO-TEC Cat# AD490LS-61 
anti-GFP-AF488 Invitrogen Cat# A-21311 
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